The Blog to Learn More About GCP and its Importance

AI Roadmap Workbook for Non-Technical Business Leaders


Image

A clear, hype-free workbook showing where AI can actually help your business — and where it won’t.
Dev Guys Team — Built with clarity, speed, and purpose.

The Need for This Workbook


If you run a business today, you’re expected to “have an AI strategy”. All around, people are piloting, selling, or hyping AI solutions. But most non-tech business leaders face two poor choices:
• Agreeing to all AI suggestions blindly, expecting results.
• Saying “no” to everything because it feels risky or confusing.

It guides you to make rational decisions about AI adoption without hype or hesitation.

Forget models and parameters — focus on how your business works. AI should serve your systems, not the other way around.

Using This Workbook Effectively


Work through this individually or with your leadership team. The purpose is reflection, not speed. By the end, you’ll have:
• A prioritised list of AI use cases linked to your business goals.
• A visible list of areas where AI won’t help — and that’s acceptable.
• A clear order of initiatives instead of scattered trials.

Treat it as a lens, not a checklist. Your AI plan should be simple enough to explain in one meeting.

AI strategy is just business strategy — minus the buzzwords.

Step One — Focus on Business Goals


Focus on Goals Before Tools


Too often, leaders ask about tools instead of outcomes — that’s the wrong start. Start with measurable goals that truly impact your business.

Ask:
• What 3–5 business results truly matter this year?
• Which parts of the business feel overwhelmed or inefficient?
• Which processes are slowed by scattered information?

It should improve something tangible — speed, accuracy, or cost. If an idea doesn’t tie to these, it’s not a roadmap — it’s just an experiment.

Skipping this step leads to wasted tools; doing it right builds power.

Step Two — Map the Workflows


Visualise the Process, Not the Platform


You must see the true flow of tasks, not the idealised version. Pose one question: “What happens between X starting and Y completing?”.

Examples include:
• New lead arrives ? assigned ? nurtured ? quoted ? revised ? finalised.
• Support ticket ? triaged ? answered ? escalated ? resolved.
• Invoice generated ? sent ? reminded ? paid.

Each step has three parts: inputs, actions, outputs. AI adds value where inputs are messy, actions are repetitive, and outputs are predictable.

Step 3 — Prioritise


Assess Opportunities with a Clear Framework


Evaluate AI ideas using MVP Rescue a simple impact vs effort grid.

Use a mental 2x2 chart — impact vs effort.
• Focus first on small, high-impact changes.
• Big strategic initiatives take time but deliver scale.
• Nice-to-Haves — low impact, low effort.
• Delay ideas that drain resources without impact.

Consider risk: some actions are reversible, others are not.

Begin with low-risk, high-impact projects that build confidence.

Laying Strong Foundations


Fix the Foundations Before You Blame the Model


Messy data ruins good AI; fix the base first. Clarity first, automation later.

Design Human-in-the-Loop by Default


AI should draft, suggest, or monitor — not act blindly. Build confidence before full automation.

Common Traps


Steer Clear of Predictable Failures


01. The Demo Illusion — excitement without strategy.
02. The Pilot Graveyard — endless pilots that never scale.
03. The Full Automation Fantasy — imagining instant department replacement.

Choose disciplined execution over hype.

Partnering with Vendors and Developers


Your role is to define the problem clearly, not design the model. State outcomes clearly — e.g., “reduce response time 40%”. Share messy data and edge cases so tech partners understand reality. Agree on success definitions and rollout phases.

Transparency about failures reveals true expertise.

Signs of a Strong AI Roadmap


How to Know Your AI Strategy Works


It’s simple, measurable, and owned.
Buzzword-free alignment is visible.
Ownership and clarity drive results.

Essential Pre-Launch AI Questions


Before any project, confirm:
• What measurable result does it support?
• Is the process clearly documented in steps?
• Do we have data and process clarity?
• Where will humans remain in control?
• What is the 3-month metric?
• What’s the fallback insight?

Conclusion


Good AI brings order, not confusion. It’s not a list of tools — it’s an execution strategy. True AI integration supports your business invisibly.

Leave a Reply

Your email address will not be published. Required fields are marked *